High dynamic range coherent imaging using compressed sensing.
نویسندگان
چکیده
In both lensless Fourier transform holography (FTH) and coherent diffraction imaging (CDI), a beamstop is used to block strong intensities which exceed the limited dynamic range of the sensor, causing a loss in low-frequency information, making high quality reconstructions difficult or even impossible. In this paper, we show that an image can be recovered from high-frequencies alone, thereby overcoming the beamstop problem in both FTH and CDI. The only requirement is that the object is sparse in a known basis, a common property of most natural and manmade signals. The reconstruction method relies on compressed sensing (CS) techniques, which ensure signal recovery from incomplete measurements. Specifically, in FTH, we perform compressed sensing (CS) reconstruction of captured holograms and show that this method is applicable not only to standard FTH, but also multiple or extended reference FTH. For CDI, we propose a new phase retrieval procedure, which combines Fienup's hybrid input-output (HIO) method and CS. Both numerical simulations and proof-of-principle experiments are shown to demonstrate the effectiveness and robustness of the proposed CS-based reconstructions in dealing with missing data in both FTH and CDI.
منابع مشابه
Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k
Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...
متن کاملCoherence Pattern-Guided Compressive Sensing with Unresolved Grids
Highly coherent sensing matrices arise in discretization of continuum imaging problems such as radar and medical imaging when the grid spacing is below the Rayleigh threshold. Algorithms based on techniques of band exclusion (BE) and local optimization (LO) are proposed to deal with such coherent sensing matrices. These techniques are embedded in the existing compressed sensing algorithms such ...
متن کاملMulti-target simultaneous ISAR imaging based on compressed sensing
Conventional range-Doppler (RD) inverse synthetic aperture radar (ISAR) imaging method utilizes coherent integration of consecutive pulses to achieve high cross-range resolution. It requires the radar to keep track of the target during coherent processing intervals (CPI). This restricts the radar’s multi-target imaging ability, especially when the targets appear simultaneously in different obse...
متن کاملSingle-pixel optical camera for video rate ultrasonic imaging
A coherent-light single-pixel camera was used to interrogate a Fabry–Perot polymer film ultrasound sensor, thereby serially encoding a time-varying 2D ultrasonic field onto a single optical channel. By facilitating compressive sensing, this device enabled video rate imaging of ultrasound fields. In experimental demonstrations, this compressed sensing capability was exploited to reduce motion bl...
متن کاملMismatch and resolution in compressive imaging
Highly coherent sensing matrices arise in discretization of continuum problems such as radar and medical imaging when the grid spacing is below the Rayleigh threshold as well as in using highly coherent, redundant dictionaries as sparsifying operators. Algorithms (BOMP, BLOOMP) based on techniques of band exclusion and local optimization are proposed to enhance Orthogonal Matching Pursuit (OMP)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 23 24 شماره
صفحات -
تاریخ انتشار 2015